Task planning under uncertainty using a spreading activation network

نویسندگان

  • Sugato Bagchi
  • Gautam Biswas
  • Kazuhiko Kawamura
چکیده

As robotics and automation applications extend to the service sector, researchers have to increasingly deal with performing robotic actions in uncertain and unstructured environments. A traditional solution to this problem models uncertainty about the effects of actions by probabilities conditioned on the state of the environment, making it possible to select plans that have the highest probability of success in a given situation. Reactive systems use another approach to handling uncertainty, by employing a set of predefined situation-response rules that make it possible to move toward the goal from any situation, whether expected or unexpected. This paper describes a planner that combines the two approaches. A proactive component generates plans that are biased toward picking the most reliable action in a given situation, and a reactive component can alter the selected actions based on unexpected situations that may arise in uncertain environments. Action selection is driven by a spreading activation mechanism on a probabilistic network that encodes the domain knowledge. A decision-theoretic framework incorporates quantitative goal utilities and action costs into the action selection mechanism. Experiments conducted demonstrate the ability of the planner to plan with hard and soft domain constraints and action costs, modify plans as a reaction to unexpected changes in the environment or goal utilities, and plan in situations with multiple conflicting goals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing decentralized production–distribution planning problem in a multi-period supply chain network under uncertainty

Decentralized supply chain management is found to be significantly relevant in today’s competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final produc...

متن کامل

Models of EFL Learners’ Vocabulary Development: Spreading Activation vs. Hierarchical Network Model

Semantic network approaches view organization or representation of internal lexicon in the form of either spreading or hierarchical system identified, respectively, as Spreading Activation Model (SAM) and Hi- erarchical Network Model (HNM). However, the validity of either model is amongst the intact issues in the literature which can be studied through basing the instruction compatible wi...

متن کامل

A multi-period distribution network design model under demand uncertainty

Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input dat...

متن کامل

An optimization model for management of empty containers in distribution network of a logistics company under uncertainty

In transportation via containers, unbalanced movement of loaded containers forces shipping companies to reposition empty containers. This study addresses the problem of empty container repositioning (ECR) in the distribution network of a European logistics company, where some restrictions impose decision making in an uncertain environment. The problem involves dispatching empty contain...

متن کامل

Routine Computing Tasks: Planning as Understanding

A system called NETWORK is described which implements the construction-integration model of Kintsch (1988) in a routine computing-task domain. This system builds a plan of action on-line far o given task from o set of plan elements. These plan elements are simple overlearned production rules that are put together by NETWORK to produce plans for novel tosks. This approach is contrasted with othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part A

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2000